

Supporting Pattern-based Application Authoring
for the Semantic Web

Fuchs Michael, Niederée Claudia, Hemmje Matthias

{fuchs,niederee,hemmje}@ipsi.fraunhofer.de

Fraunhofer IPSI, Dolivostrasse 15, 64293 Darmstadt
Abstract

 The SWAN approach, presented in this paper,
addresses the challenging task of developing Semantic
Web Applications, i.e., Web applications that fully and
effectively exploit and serve the Semantic Web as their
operational environment. It is based on the support of two
types of models, semantic domain models and conceptual
user interface models, as well as on flexible model
mappings. The SWAN framework, implementing the
SWAN approach, contains tools for pattern-based Web
applications authoring. SWAN user interface design
patterns reflect frequent dialogue sequences and ease user
interface construction as well as interpretation.
Furthermore, each SWAN design pattern is associated
with mapping constraints, which restrict mappings
between user interface and domain model elements.

1. INTRODUCTION
 The Semantic Web promises exciting new applications
in the Web as well as improved task and cooperation
support [1]. However, for Web applications to effectively
operate in the Semantic Web environment they should
serve as well as exploit the special characteristics of this
new operational context. The Semantic Web vision, thus,
imposes new challenges on the design and development
of such Semantic Web applications: First of all, Web
applications move from a purely human user community
towards a mixed user community consisting of humans as
well as software agents. Secondly, automatic
interpretation of content, one of the main building blocks
of the Semantic Web, is based on interlinking local
domain models with globally defined interpretation
schemes like vocabularies and ontologies.
Building upon innovative Web technologies and
standards, our approach for Semantic Web Application
development and iNtegration (SWAN approach)
combines the following building blocks:
• Semantic domain models are semantically-enriched

representations of the domain model underlying an
application. They meet the requirement of interlinking
local models with global schemata enabling
interpretation in a global context;

• Conceptual UI models describing the interactions of
users with the system on a conceptual level meet the
requirement of representing interaction with humans as
well as with software agents;

• UI design patterns describe frequent patterns of UI
dialogues that represent larger sequences of interaction

activities (cf. the shopping cart metaphor). The reuse of
such pattern eases conceptual UI design and reduces
the “mental effort” for users by relying on similar user
interaction pattern.

In addition, flexible mappings between the different types
of models are crucial building blocks of the model-based
SWAN framework.
Design patterns (e.g., [2, 3]) are a medium of easing
communication between designers, of establishing best
practice in design, and of contributing to design quality.
The type of design patterns applied for the SWAN
approach are macro UI design patterns comparable to the
application framework pattern described in [4]. The
SWAN approach augments UI design pattern with
domain model constraints. These constraints restrict the
possible mappings between the conceptual UI model and
the underlying (semantic) domain model and can be used
to guide the definition of such mappings in building
Semantic Web Applications. The SWAN approach is
implemented in the SWAN framework relying on the
form-based UI paradigm and following a meta-design
approach [6], i.e., the SWAN system contains a suite of
system authoring tools that are used in its own design and
customization. This paper focuses on discussing the
SWAN approach and the role of the Macro UI Design
Pattern in this approach. It also gives a short overview
over the SWAN framework and its realization. A
catalogue of concrete design patterns will be presented in
a future publication.
The rest of the paper is structured as follows: Section 2
discusses related work. Section 3 and 4 present the
proposed approach, where section 3 describes the overall
SWAN approach and the Semantic Web Application
models, whereas section 4 discusses the role of UI design
pattern in the SWAN framework. In section 5 we give an
overview of the framework. The paper concludes with a
summary and some plans for future work.

2. RELATED WORK
 The approach discussed in this paper combines a
design pattern approach with a model-based Semantic
Web application approach. The related works for the two
areas are introduced and discussed separately in this
section. A complementing notion of Semantic Web
Applications is used in [7]. Whereas we mean Web
application effectively operating in the Semantic Web, in
[7] applications that deal with RDF-based content in a
user-friendly way are named Semantic Web Applications.

Especially, the programming language Adenine supports
the RDF model as a built-in data type.
Several design pattern approaches and collections have
been proposed within the software design and software
engineering area since Christopher Alexander’s
architecture design pattern [2]. In [3], for example, a
collection of successful solutions to recurring problems in
object-oriented design has been published (see also
critical discussion in [8]). With the explicit aim to include
the user into the design process, Jennifer Tidwell [5]
wrote a pattern language for HCI design which consists of
about 50 design patterns for designing interactive
systems. This collection of patterns is widely regarded as
currently the most ambitious attempt at a UI pattern
language. Other collections of UI design patterns can be
found in [9, 10]. Furthermore [4] describes design
patterns for Web application frameworks, which consists
of a WebML [11] diagram to express the structure and
navigation of site views and a structural schema diagram
to specify the domain model view. In section 4, we use
WebML as navigation description part of our pattern.
The pattern presented in this paper build upon HCI design
pattern as they are proposed e.g. in [5]. However, they are
not restricted to the HCI design process, but also support
parts of the software design process. More precisely, they
focus on the bridge between the HCI design and its
mapping to the underling domain model.
The way we use our design pattern is most similar to that
proposed in [12, 13, 14]. While we aim to have different
levels of complexity within each pattern to fill the gap
between user requirement and formal specification, [12]
proposed an ontological mapping approach as a discipline
of software architecture in addition to UI software design
and software engineering. In this case a software architect
acts as a mediator between designer and engineer in
building up an ontological dictionary and also a workflow
map of its recurring standard processes. [13], and [14] are
proposing different patterns for each phase of the software
design and development process addressing different
groups of experts. In contrast to this we are more
interested on how design pattern can be used to bridge the
gap between two design tasks.
The SWAN framework introduced in this paper will
follow the model-based software development approach
(see e.g. [15, 16, 17, 18]). Mobi-D [15] is an interactive
environment where declarative models can be connected.
It distinguishes abstract and concrete models and supports
mappings between them. In Mecano [16], a model-based
UI development environment is introduced, which
provides a tool for creating domain models. Based on this
model, high-level dialogs (e.g. workflow and navigation
structure of windows) as well as low-level dialogs (one
step within the high-level dialog e.g. form input field,
button) can be generated and later customized. However
in contrast to our approach the domain model has to be
constructed manually and is not directly coupled to
existing application data. SUIMS [17], another model-

based approach, is based on the so-called ART Schemata
where a UI model is composed from objects, actions,
parameter, attributes and their types, pre-conditions, and
post-conditions as well as the corresponding relations
between them. These schemata can be instantiated with
parameters resulting in the creation of different types of
UIs. To build up the schemata, a highly skilled
programmer is needed, in contrast to our approach that
includes a user-friendly system authoring tool suite.
Our conceptual UI model is based on the XForms
standard [19]. Other formats for conceptual UI models
have been proposed like e.g. the Ozone UI ontology in the
Haystack framework [7]. This UI model is based on RDF
easing the coupling with the domain model, but lacking
the UI specific support of XForms (events, predefined
controls, validation of input, etc.).

3. SEMANTIC WEB APPLICATIONS

 Web Applications in the Semantic Web. The
standard architecture for Web applications is based on
some persistent data storage (e.g. a RDBMS). A vendor-
independent protocol like JDBC makes the data
accessible for the application layer. In the presentation
layer, finally, the UI usually consists of a set of HTML-
encoded pages. Technologies like JSP or ASP are used to
dynamically create web pages including application data.
In the context of the Semantic Web the “users” of the
interface are no longer restricted to humans, but also
include software agents. If relying only on an HTML-
encoded web page, a software agent cannot extract
sufficient information
• to know how to enter into a dialog (i.e. an interaction)

with the system which is in the case of an HTML-
encoding mainly due to the lack of logical structure and
due to the relaxed syntax rules.

• to infer what the (input) fields mean and which
restrictions are available for qualifying the allowed
input (constraints, types).

Humans use their cognitive abilities as well as their
experience with similar types of Web applications for the
interpretation of such web application UIs.
Semantic Web Application Models. This problem of
“how” and “what” can be overcome by introducing two
new types of models: on the one hand, conceptual UI
models systematically describe possible interactions with
the system on a conceptual level and, on the other hand,
semantic domain-models describe application domains
and relate model components to community-accepted
ontologies and vocabularies. We are assuming form-based
UIs and corresponding conceptual models that support the
dialog and interaction with the user or agent in a well-
structured and well-understood interaction paradigm.
Semantic Domain Model While all Web applications
embody some type of a domain model that is underlying
the application this model is usually made explicit in a
systematic way at design time only, e.g., when creating a

UML class diagram. When the system is implemented the
domain model is represented in a partly fragmented and
partly duplicated way within the code of the application
layer (e.g. Java classes) and the schema of the underlying
relational database. Furthermore, the model is a local
domain model relying on a conceptualization specific for
the implementation of this application.
In the Semantic Web context the domain model has to be
made explicit and it has to be set into relationship to a
global ontology that is also accessible by agents that want
to interact with the system. The RDF (Resource
Description Framework) family (RDF Schema, OWL)
supplies models and languages for developing domain
models in a global context. RDF provides a data model
for the description of resources in the Web. The
associated schema language, RDF Schema, can be used
for the definition of domain models and vocabularies.
Modeling capabilities as they are required in SWAN
approach are improved when RDF Schema is combined
with the Web Ontology Language (OWL).
Conceptual UI Model The SWAN approach introduces
an additional layer between the application layer and the
actual UI that manages a conceptual model of the UI. This
model describes the UI of the system on a conceptual
level independent of the respective UI agent.
Conceptual UI models can be automatically transformed
into UIs for specific types of UI agents (like e.g. for a
Web browser, a PDA, or a mobile phone) by adequate
processors introducing more flexibility with respect to the
type of client that the UI is finally displayed on and
avoiding the bias towards one type of UI paradigm.
Moreover, by communicating the conceptual structure of
the interface to, e.g., software agents in the Semantic Web
can use it to learn how to use the interface, e.g., where are
fields to fill and elements to select from a list. However,
this requires a shared understanding and a corresponding
conceptualization of UI functionality. XForms [19], the
currently emerging standard for the next generation form-
based UIs of Web applications, defines a model (XML-
based syntax) for the description of UIs on a conceptual
level which satisfies the aforementioned requirements. It
also supports the definition of mappings between
elements of the domain model and the conceptual UI. In
addition, other standards of the XML family like XML,
XML Schema, SOAP, XPath are, of course, of
importance in the SWAN approach. They are e.g. used for
information exchange, representation of intermediate
information formats, and for component interaction
following the Web service paradigm.
Interaction Design Pattern
The UI building blocks provided by a conceptual UI
model language like XForms are on a rather elementary
level. The aim of such languages is to provide flexible
general purpose support for the construction of conceptual
UI models. In practice, however, there are often
interaction patterns that come up again and again. Such
patterns are captured by introducing support for

interaction design patterns into the SWAN framework.
This aspect is discussed in more detail in section 4.

4. INTERACTION DESIGN PATTERNS IN
SEMANTIC WEB APPLICATIONS

 Interaction Design Pattern Benefits. UI design, as all
other design, is positioned somewhere between creativity
and relying upon approved methods and pattern. A
prominent example for repetitive pattern in UI design
from the e-Business domain is the shopping cart metaphor
that encapsulates a certain type of UI and an underlying
interaction pattern. A systematic way to reflect such
repetitive pattern in the design process is the introduction
of so-called design pattern that encode best practice in
frequent design situations. The following advantages of
UI design pattern are exploited in the SWAN approach:
• Design Efficiency and Quality: Making use of design

pattern instead of starting each time from scratch
clearly contributes to design efficiency. Complex UI
solutions can be built up more systematically. Since the
design patterns are based on approved “good” design
their use can also contribute to design quality.

• Improved Communication: The proposed SWAN
interaction design pattern define a vocabulary for UI
designers to efficiently discuss about designs. Pattern
Catalogues enriched with concrete UI examples can be
used to effectively discuss UI designs with the user.

Furthermore, there are two additional benefits of
supporting UI design pattern within the framework.
• Mapping Constraints: Constraints for the mappings

between the conceptual UI and the domain can be
identified based on an analysis of the respective UI
design pattern; constraints hold for all UIs based on the
respective design pattern and can, for example, be
exploited for intelligent mapping support.

• Shared Interaction Semantic: A design pattern also
supply an associated interaction pattern for the user of
the respective UI. All UIs based on the same design
pattern share the same interaction semantics. If there is
an agreed upon set of design pattern the agent has to
learn the pattern only once and can apply it to all UIs
based on the same pattern. This holds true for humans
as well as for software as users of the interface.

Design Pattern Example
We distinguish application design pattern reflecting a
business process sequence in a specific domain and
general design pattern that can be reused in different
domains. This section introduces a simple general design
pattern example that is used to illustrate our approach.
Our design pattern are composed from design pattern
building blocks that themselves can be other design
pattern or actual UI elements as they are e.g offered by
XForms. In addition, we provide the context a design
pattern can be used in as well as the constraints for
mapping UIs based on the respective design pattern on an
underlying domain model. In more detail, a UI design

pattern DP is described along the following n dimensions
(following the description format proposed in [14]):
Name: Name of the design pattern DP. In the Semantic
Web Context of the SWAN approach this should
preferably be a URI, e.g. based on the URI of the pattern
collection DP is part of.
Classification: Design patterns can be classified
according to different criteria like purpose, interaction.
type, and granularity easing the selection of adequate
pattern. We will initially rely on existing classification
schemes, refining them as our collection grows.
Problem: This dimension describes the UI design
situations, in which DP can be applied and/or the UI
design challenges that can be solved by applying DP.
Pattern Context: There are two types of requirements
imposed by DP to its context: The Pattern context
identifies design patterns providing a context for DP, i.e.
design patterns that can contain or typically contain DP,
or conditions for such containment (cf. context
description in [14]).The second type of context, the
Mapping requirements refer to constraints that a mapping
between a domain model and a UI based on DP has to
fulfill due to DP’s characteristics.
Examples: One or more concrete UIs that are based on
design pattern DP, illustrate the use of the design pattern
and ease design pattern selection;
Description: This dimension describes the structure of
DP and the interaction pattern it supports. Especially, the
role of components of the DP is discussed.
Navigation Diagram: This dimension describes the
navigation pattern and the dataflow within DP. The visual
language WebML [11, 20] is used for this purpose.
The Design Pattern SelectionListToInteractiveDetail
Name: SelectionListToInteractiveDetail
Classification: MultiPageDialog, FromRoughToDetail,…
Description: The Pattern consists of two components,
where Overview acts like a Menu and InteractionDetail is
the associated action. The action represents an interaction
of a UI for modifying a certain Domain Object.
Problem: Interaction with one Item of a Collection
Pattern Context: BrowseAndInteractSystem
Mapping Requirements:

Example:

Navigation Diagram: Within the following WebML
diagram, the unit Selection List passes on click the Object
ID to the loader unit Object which automatically forwards
it (with activity A) to the form unit Interactive Detail.
After sending the modified Object to the data modifying
unit Update there are two navigation possibilities. Either
the transaction was OK and system will navigate to
Selection List or it was KO (not successful) and the
system navigates back to the form unit Interactive Detail

Identification of Mapping Constraints
We will illustrate the identification of mapping
constraints by looking into concrete examples. We start
with simple elements and proceed step-wise with more
complex structures. In each step the structure from the
previous step is used as a building block. This gives us the
opportunity to also illustrate the propagation of mapping
constraints from component to composite.
Before we start with the discussion we have to introduce
some notations: For the domain model D we assume an
OWL/RDF like structuring, where the model consists of a
set of classes (Classes) and properties (Properties) that
are used to model relationships between concepts as well
as attributes of a class. We assume that there is a function
domain(p) that, when applied to a property returns the
domain of the property (cf. domain property of RDF
Schema). For the conceptual UI model we assume that
there is a set of control elements and a set of constructors.
For each type of control element CE we assume a
predicate CE(e) that is fulfilled for each control element e
that belongs to the control element class CE.
We distinguish elements of the UI modeling language that
can be set in relationship with the domain model, which
we call controls, and elements that are independent of the
domain model like labels. The following discussion is
restricted to situations, where controls are mapped to
domain model elements, since we are interested in the
mappings and the associated constraints.
We start our discussion with the output control element,
i.e. an element that is used to display information of the
domain model. An output control object e is mapped to a
domain object property p. Of course the value for an
output control can also be composed from different
properties, e.g. by string concatenation. However, we
assume here that a derived property is created in this case
before the mapping. The predicate comp means that the
two elements are compliant with each other. For the case
of the outputControl this means that the type of the
element allows it to be displayed in the control element.

An input control e, as it is implemented by input fields of
a form, enables the user to input a character string. Again
the control is associated with a domain model property. In
addition, the mapping must enable the propagation of the
user input into the properties of the domain model.

In the constraint we capture this by using a predicate
writable(p) that is used to express that it is possible to
change the value of the property p. This implies different
things: we need a write function or a path expression that
enables us to change the property value and it has to be
allowed to change the property value. Examples of
properties, whose values cannot be changed (directly), are
derived properties (see above) or read-only properties.
Based on these two simple controls we can already create
a first simple design pattern, which we call
InteractiveDetail. This pattern is used to display or input
values for the properties of one object. This pattern can
for example be found in forms for entering your personal
data like name, address, email, etc. The pattern is
composed from a GroupConstructor that contains a set of
InputControl or OutputControl elements or a mix of both
plus typically some action element to complete/submit
the interaction. For this pattern the following mapping
constraint can be identified:

The constraint states that all associated properties pj (1 ≤ j
≤ n) have to belong to the same domain object o and that
the constraints of the simple controls (constraintOutputControl
or constraintInputControl) have to be satisfied.
The pattern InteractiveDetail can be used in larger design
patterns e.g. by combining it with an object selection list
as it is done in the pattern
SelectionListToInteractiveDetail, which has been
described above.
Assuming that we built a mapping constraint for
SelectionList (similar to InteractiveDetail) and
furthermore there is a function detail(ref) which returns
the details of an object o if ref is a reference to o. Then it
is possible to combine the mapping constraints:

Thus constraintSelectionListToInteractiveDetail is
satisfied, if there is a list of references (which satisfy
constraintSelectionList) to objects which satisfy
constraintInteractiveDetail.

5. The SWAN Framework
 SWAN Framework and its Architecture. The
SWAN framework is an implementation of the SWAN
approach. Its architecture enriches the traditional three
layered Web application architecture layers by

components for the management of the Semantic Web
Application Models. Furthermore, components for the
pattern-based definition and management of the mappings
between models are included (see Figure 1). The semantic
domain model is part of the application layer whereas the
UI model is managed as part of the UI layer.

id name
1 Rudar

2 Best
3 G lue
4 Holl ow

auth ors
id name
1 Rudar

2 Best
3 G lue
4 Holl ow

auth ors id name
1 Rudar
2 Best
3 Glue
4 Hollow
5 Rudar
6 Best
7 Glue
8 Hollow
9 Rudar

10 Best
11 Glue

authors

id name
1 Rudar
2 Best
3 G lue

4 Holl ow

auth ors

id name
1 Rudar
2 Best
3 Glue
4 Hollow
5 Rudar
6 Best
7 Glue
8 Hollow
9 Rudar

10 Best
11 Glue

authors

id name
1 Rudar

2 Best
3 G lue
4 Holl ow

auth ors
id name
1 Rudar

2 Best
3 G lue
4 Holl ow

auth ors id name
1 Rudar
2 Best
3 Glue
4 Hollow
5 Rudar
6 Best
7 Glue
8 Hollow
9 Rudar

10 Best
11 Glue

authors

id name
1 Rudar
2 Best
3 G lue

4 Holl ow

auth ors

id name
1 Rudar
2 Best
3 Glue
4 Hollow
5 Rudar
6 Best
7 Glue
8 Hollow
9 Rudar

10 Best
11 Glue

authors

Figure 1: SWAN Framework Architecture
The mapping between the semantic domain model and the
conceptual UI model propagates semantic information
contained in the domain model into the UI. In defining
such mappings, constraints coming from the underlying
design pattern can be used to guide the process. Based on
this propagation the semantic information can be made
available to the agents of the Semantic Web.
The functionality of the framework is based on a flexible
coupling process that implements the bi-directional
mappings that are required to dynamically couple the
different models of the SWAN architecture. This semi-
automatic process is described in more detail in [21].
SWAN Authoring Tool Suite
The SWAN authoring tool suite completes the SWAN
framework by providing system authoring tools for the
definition of the models and mappings. It follows the idea
of meta-design [6] enabling the design, customization,
and evolution of an application solution without resorting
to programming. In more detail, the tool suite consists of
the following main components:
• Domain Object Mapping Manager (DOMM): This

component extracts a default domain model from the
database schema of an application and transforms it
into an RDF-based representation. The rules governing
this mapping are discussed in [21].

• VizCo: The domain model can be restricted to relevant
views to ease the task of defining mappings between
the domain model and UI components. This is done
with the authoring tool VizCo.

• Form Dialog Manager (FDM): The FDM is an
authoring tool for the definition of conceptual user-
interface models based on the XForms model and for
the definition of mappings between elements of the
conceptual UI and domain model views.

The SWAN authoring tool suite contains further tools,
e.g. for the definition of multilingual and multi-role
navigation structures based on taxonomies (see [22]).
Currently an extension of the Form Dialog Manager is
under development that enables the power user to select
from a set of design pattern that is then used to provide an
XForm template and to guide the mapping process.

6. Conclusions and Future Research
In this paper we presented the SWAN approach and
framework for systematically developing Web
Applications for the Semantic Web. The SWAN approach
is based on the introduction of two types of Semantic
Web Application models, conceptual UI models and
semantic domain models, and the support of flexible
mappings between these models. The approach is
augmented by the use of UI design pattern that reflect
frequent dialogue sequences and provide an additional
higher-level layer for UI construction and interpretation.
Design pattern play an important role in guiding the UI
design process as well as the definition mappings between
the Semantic Web Application models, since SWAN
design patterns are equipped with mapping constraints
that restrict the set of possible UI-domain model
mappings. Web applications built with the SWAN
framework exhibit the semantic domain model as well as
the underlying design pattern as part of their UI, thus,
easing interpretation of and interaction with the UIs for
human as well as for software agents.
A first prototype of the SWAN framework has been
implemented and is currently evaluated in the context of
an e-Business Web application. However, there are still
several areas of future work. Currently, we are active in
the definition of a language for the machine-readable
representation of our UI design pattern, the definition and
evaluation of a systematic catalogue of design patterns,
the flexible integration of an extensible set of design
patterns into the FDM tool and the implementation of an
intelligent mapping definition support based on the
mapping constraints identified for the design pattern. A
further step for the exploitation of the design pattern in
the Semantic Web context is the publication, and
community-based evolution of a shared ontology for the
description and classification of the design pattern.

References
[1] T. Berners-Lee, J. Handler, and O. Lassila. “The

semantic web”. Scientific American, Special Issue on
“Intelligent Systems/Tools In Training And Life-Long
Learning“, 2001.

[2] C. Alexander. “The Timeless Way of Building”. New
York: Oxford University Press, 1979.

[3] E. Gamma, R. Helm, R. Johnson and J. Vlissides.”
Design Patterns”. Addison-Wesley, 1995.

[4] S. Ceri, P. Fraternali, M. Matera: "WebML
Application Frameworks: a Conceptual Tool for
Enhancing Design Reuse". WWW10 Workshop Web
Engineering, Hong Kong, May 2001.

[5] Tidwell, J. (1999), “Common Ground: A Pattern
Language for Human-Computer Interface Design”,
Available at: www.mit.edu/~jtidwell

[6] G. Fischer and E. Scharff. „Meta-design: Design for
designers”. In Proceedings of the DIS2000 Conference,
2000.

[7] Dennis Quan, David Huynh, and David R. Karger.
“Haystack: A Platform for Authoring End User
Semantic Web Applications”, in ISWC 2003.

[8] J. Borchers, “Interaction design patterns: twelve
theses”, position paper CHI 2000, April, Hague,
Netherlands: ACM Press.

[9] van Welie, Martijn , “Web Design patterns (2003)”,
available a http://www.welie.com/patterns/

[10] Sari A. Laakso ,User Interface Design Patterns
(2003), available at: www.cs.helsinki.fi/u/salaakso

[11] S. Ceri, P. Fraternali, A. Bongio: "Web Modeling
Language (WebML): a Modeling Language for
Designing Web Sites". WWW9 Conference,
Amsterdam, May 2000.

[12] Peter J. Denning and Pamela A. Dargan, “A
discipline of software architecture”, ACM Interactions
Vol. 1, 55-65, ACM Press 1994.

[13] J. Finlay, E. Allgar, A. Dearden, B. McManus.
“Pattern Languages in Participatory Design”, HCI
2002, London, UK. 2nd - 6th September 2002.

[14] Jan O. Borchers: “A Pattern Approach to Interaction
Design”. 369-378: Proceedings of the Conference on
Designing Interactive Systems: Processes, Practices,
Methods, Techniques, Aug., 2000, NY ACM Press

[15] A. R. Puerta. “A model-based interface development
environment”. In IEEE Software, volume 14 of 4, 1997.

[16] A. R. Puerta, Eriksson, Gennari, and Musen. “Model-
based automated generation of user interfaces”. In
Readings in Intelligent User Interfaces, San Francisco,
1998. ACM Press.

[17] J. Foley, C. Gibbs, W. Kim, and S. Kovacevic. “A
knowledgebased user interface management system”. In
Readings in Intelligent User Interfaces, San Francisco,
1998. ACM Press.

[18] J. Eisenstein, J. Vanderdonckt, and A. Puerta
“Applying Model-Based Techniques to the
Development of UIs for Mobile Computers” Readings
in Intelligent User Interfaces. ACM Press, 2001.

[19] M. Dubinko, L. Klotz, R. Merrick, and T. V. Raman.
“XForms 1.0”, W3C Recommendation 14 October
2003, http://www.w3.org/

[20] S. Ceri, P. Fraternali, M. Matera: "Conceptual
Modeling of Data-Intensive Web Applications". IEEE
Internet Computing, Vol. 6 , No. 4, 2002.

[21] Michael Fuchs, Claudia Niederée, Matthias Hemmje,
Erich J. Neuhold “Supporting Model-based
Construction of Semantic-enabled Web Applications”,
In Proceedings of WISE 2003. IEEE Computer Society.
Roma, Italy, December 2003.

[22] C. Niederée, C. Muscogiuri, and M. Hemmje.
“Taxonomies in operation, design, and meta-design”. In
Proceedings of DASWIS 2002. IEEE CS, 2002.

